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Many modern dynamic languages lack tools  
for understanding complex failures.

By David Pacheco

Postmortem 
Debugging 
in Dynamic 
Environments

Since then, postmortem debugging 
technology has been developed and 
used in many different systems, includ-
ing all major consumer and enterprise 
operating systems, as well as the na-
tive execution environments on those 
systems. These environments make 
up much of today’s core infrastructure, 
from the operating systems that under-
lie every application to core services 
such as Domain Name System (DNS), 
and thus form the building blocks of 
nearly all larger systems. To achieve the 
high levels of reliability expected from 
such software, these systems are de-
signed to restore service quickly after 
each failure while preserving enough 
information that the failure itself can 
later be completely understood.

While such software was histori-
cally written in C and other native 
environments, core infrastructure is 
increasingly being developed in dy-
namic languages, from Java over the 
past two decades to server-side JavaS-
cript over the past 18 months. Dynam-
ic languages are attractive for many 
reasons, not least of which is that they 
often accelerate the development of 
complex software.  

Conspicuously absent from many of 
these environments, however, are fa-
cilities for even basic postmortem de-
bugging, which makes understanding 
production failures extremely difficult. 
Dynamic languages must bridge this 
gap and provide rich tools for under-
standing failures in deployed systems 
in order to match the reliability de-
manded from their growing role in the 
bedrock of software systems.

To understand the real potential 
for sophisticated postmortem analysis 
tools, we first review the state of debug-
ging today and the role of postmortem 
analysis tools in other environments. 
We then examine the unique chal-
lenges around building such tools for 
dynamic environments and the state 
of such tools today. 

Debugging in the Large
To understand the unique value of 
postmortem debugging, it is worth 

Des pite the best efforts of software engineers to 
produce high-quality software, inevitably some bugs 
escape even the most rigorous testing process and  
are first encountered by end users. When this 
happens, such failures must be understood quickly, 
the underlying bugs fixed, and deployments patched 
to avoid another user (or the same one) running  
into the same problem again. As far back as 1951,  
the dawn of modern computing, Stanley Gill6 wrote 
that “some attention has, therefore, been given to  
the problem of dealing with mistakes after the 
program has been tried and found to fail.” Gill went 
on to describe the first use of “the post-mortem 
technique” in software, whereby the running program 
was modified to record important system state as it 
ran so that the programmer could later understand 
what happened and why the software failed. 
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examining the alternative. Both na-
tive and dynamic environments today 
provide facilities for in situ debugging, 
or debugging faulty programs while 
they’re still running. This typically in-
volves attaching a separate debugger 
program to the faulty program and 
then directing execution of the faulty 
program interactively, instruction by 
instruction or using breakpoints. The 
user thus stops the program at various 
points to inspect program state in or-

der to figure out where it goes wrong. 
Often this process is repeated to test 
successive theories about the problem.

This technique can be very effective 
for bugs that are readily reproducible, 
but it has several drawbacks. First, the 
act of stopping a program often chang-
es its behavior. Bugs resulting from 
unexpected interactions between par-
allel operations (such as race condi-
tions) can be especially challenging to 
analyze this way because the timing of 

various events is significantly affected 
by the debugger itself. More impor-
tantly, in situ debugging is often un-
tenable on production systems: many 
debuggers rely on an unoptimized 
debug build that’s too slow to run in 
production; engineers often do not 
have access to the systems where the 
program is running (as in the case of 
most mobile and desktop applications 
and many enterprise systems); and the 
requisite debugging tools are often not 
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available on those systems anyway. 
Even for cases where engineers can 

access the buggy software with the 
tools they need, pausing the program 
in the debugger usually represents an 
unacceptable disruption of produc-
tion service and an unacceptable risk 
that a fat-fingered debugger command 
might cause the program to crash. Ad-
ministrators often cannot take the risk 
of downtime in order to understand a 
failure that caused a previous outage. 
More importantly, they should not have 
to. Even in 1951 Gill cited the “extrava-
gant waste of machine time involved” 
in concluding that “single-[step] op-
eration is a useful facility for the main-
tenance engineer, but the programmer 
can only regard it as a last resort.”

The most crippling problem with 
in situ debugging is it can only be used 
to understand reproducible problems. 
Many production issues are either very 
rare or involve complex interactions 
of many systems, which are often very 
difficult to replicate in a development 
environment. The rarity of such is-
sues does not make them unimport-
ant: quite the contrary, an operating 
system crash that happens only once a 
week can be extremely costly in terms 
of downtime, but any bug that can be 
made to occur only once a week is very 
difficult to debug live. Similarly, a fatal 
error that occurs once a week in an ap-
plication used by thousands of people 
may result in many users hitting the bug 
each day, but engineers cannot attach a 
debugger on every user’s system.

So-called printf debugging is a 

common technique for dealing with 
the reproducibility issue. In this ap-
proach, engineers modify the software 
to log bits of relevant program state 
at key points in the code. This causes 
data to be collected without human 
intervention so it can be examined 
after a problem occurs to understand 
what happened. By automating the 
data collection, this technique usually 
results in significantly less impact to 
production service because when the 
program crashes, the system can im-
mediately restart it without waiting 
for an engineer to log in and debug the 
problem interactively. 

Extracting enough information 
about fatal failures from a log file is 
often very difficult, however, and fre-
quently it is necessary to run through 
several iterations of inserting addi-
tional logging, deploying the modified 
program, and examining the output. 
This, too, is untenable for production 
systems since ad hoc code changes are 
often impractical (in the case of desk-
top and mobile applications) or pro-
hibited by change control policies (and 
common sense).

The solution is to build a facility 
that captures all program state when 
the program crashes. In 1980 Douglas 
R. McGregor and Jon R. Malone9 of the 
University of Strathclyde in Glasgow 
observed that with this approach 
“there is virtually no runtime overhead 
in either space or speed” and “no ex-
tra trace routines are necessary,” but 
the facility “remains effective when a 
program has passed into production 

use.” Most importantly, after the sys-
tem saves all the program state, it can 
restart the program immediately to 
restore service quickly. With such sys-
tems in place, even rare bugs can often 
be root-caused and fixed based on the 
first occurrence, whether in develop-
ment, test, or production. This enables 
software vendors to fix bugs before too 
many users encounter them.

To summarize, in order to root-
cause failures that occur anywhere 
from development to production, a 
postmortem debugging facility must 
satisfy several constraints:

˲˲ Application software must not 
require modifications that cannot be 
used in production in order to support 
postmortem debugging, such as unop-
timized code or additional debug data 
that would significantly impact perfor-
mance (or affect correctness at all).

˲˲ The facility must be always on:  It 
must not require an administrator to 
attach a debugger or otherwise enable 
postmortem support before the prob-
lem occurs.

˲˲ The facility must be fully auto-
matic: It should detect the crash, save 
program state, and then immediately 
allow the system to restart the failed 
component to restore service as quick-
ly as possible.

˲˲ The dump (saved state) must be 
comprehensive: a stack trace, while 
probably the single most valuable 
piece of information, very often does 
not provide sufficient information to 
root-cause a problem from a single oc-
currence. Usually engineers want both 
global state and each thread’s state 
(including stack trace and each stack 
frame’s arguments and variables). Of 
course, there’s a wide range of pos-
sible results in this dimension; the 
“constraint” (such as it is) is that the 
facility must provide enough informa-
tion to be useful for nontrivial prob-
lems. The more information that can 
be included in the dump, the more 
likely engineers will be able to identify 
the root cause based on just one oc-
currence.

˲˲ The dump must be transferable to 
other systems for analysis. This allows 
engineers to analyze the data using 
whatever tools they need in a familiar 
environment and obviates the need 
for engineers to access production sys-
tems in many cases.

Figure 1. A simple MDB example.

$ mdb core 
  Loading modules: [ ld.so.1 ]
  > ::status
  debugging core file of example1 (32-bit) from solaron
  file: /export/home/dap/tmp/example1
  initial argv: ./example1
  threading model: native threads
  status: process terminated by SIGSEGV (Segmentation Fault), addr=10

  > ::walk thread | ::findstack -v
  stack pointer for thread 1: 8047b98
  [ 08047b98 func+0x20() ]
    08047bbc main+0x21(1, 8047bdc, 8047be4)
    08047bd0 _start+0x80(1, 8047cc4, 0, 8047ccf, 8047cdc, 8047ced)

  > func+0x20::dis
  ...
  func+0x20:                    movl     $0x0,(%eax)
  ...
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Postmortem Debugging  
in Native Environments
To understand the potential value of 
postmortem debugging in dynamic 
languages, it is also helpful to exam-
ine those areas where postmortem 
analysis techniques are well developed 
and widely used. The best examples 
are operating systems and their na-
tive execution environments. Histori-
cally this software has comprised core 
infrastructure; failures at this level of 
the stack are often very costly either be-
cause the systems themselves are nec-
essary for business-critical functions 
(as in the case of operating systems on 
which business-critical software is run-
ning) or because they are relied upon 
by business-critical systems upstack 
(as in the case of infrastructure services 
such as DNS).

Most modern operating systems can 
be configured so that when they crash, 
they immediately save a “crash dump” 
of all of their state and then reboot. 
Likewise, these systems can be config-
ured so that when a user application 
crashes, the operating system saves a 
“core dump” of all program state to a 
file and then restarts the application. 
In most cases, these mechanisms al-
low the operating system or user ap-
plication to return to service quickly 
while preserving enough information 
to root-cause the failure later.

As an example, let’s look at core 
dumps under Illumos, an open source 
Solaris-based system. Take the follow-
ing broken program:

1 int
2 main(int argc, char *argv[])
3 {
4     func();
5     return (0);
6 }       
7         
8 int
9 func(void)
10 {
11    int ii;
12    int *ptrs[100];
13         
14    �for (ii = -1; ii < 100; ii++)
15         *(ptrs[ii]) = 0;
16         
17    return (0);
18 }  

This simple program has a fatal flaw: 

Figure 2. Analyzing thread stacks.

> ::stacks -m zfs
THREAD           STATE    SOBJ            COUNT
ffffff0007c0fc60 SLEEP    CV                2
           swtch+0x147
           cv_wait+0x61
           txg_thread_wait+0x5f
           txg_quiesce_thread+0x94
           thread_start+8

ffffff0007f51c60 FREE     <NONE>            1
           cpu_decay+0x2f
           bitset_atomic_del+0x38
           apic_setspl+0x5c
           do_splx+0x50
           disp_lock_exit+0x55
           cv_signal+0x96
           taskq_dispatch+0x351
           zio_taskq_dispatch+0x6b
           zio_interrupt+0x1a
           vdev_disk_io_intr+0x6b
           biodone+0x84
           dadk_iodone+0xe7
           dadk_pktcb+0xc6
           ata_disk_complete+0x119
           ata_hba_complete+0x38
           ghd_doneq_process+0xb3
           0x16
           dispatch_softint+0x3f

ffffff0007b25c60 SLEEP    CV                1
           swtch+0x147
           cv_timedwait+0xba
           arc_reclaim_thread+0x17b
           thread_start+8

ffffff0007b2bc60 SLEEP    CV                1
           swtch+0x147
           cv_timedwait+0xba
           l2arc_feed_thread+0xa5
           thread_start+8

ffffff0009b95c60 SLEEP    CV                1
           swtch+0x147
           cv_timedwait+0xba
           txg_thread_wait+0x7b
           txg_sync_thread+0x114
           thread_start+8

ffffff01e26d08e0 SLEEP    CV                1
           swtch+0x147
           cv_wait+0x61
           txg_wait_synced+0x7f
           spa_sync_allpools+0x76
           zfs_sync+0xce
           vfs_sync+0x9c
           syssync+0xb
           sys_syscall32+0x101

ffffff0007c15c60 SLEEP    CV                1
           swtch+0x147
           cv_wait+0x61         
           zio_wait+0x5d
           dsl_pool_sync+0xe1
           spa_sync+0x32a
           txg_sync_thread+0x265
           thread_start+8
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core dump than to try to guess what 
steps they took that led to the crash 
and then reproduce the problem from 
those steps. Examining the core dump 
is also the only way to be sure the prob-
lem you found is the same one the bug 
reporter encountered.

Higher-level dump analysis tools can 
be built explicitly for development as 
well. Libumem, a drop-in replacement 
for malloc(3c) and friends, provides 
(among other features) an MDB mod-
ule for iterating and inspecting objects 
related to the allocator. Combined with 
an optional feature to record stack 
traces for each allocator operation, the 
::findleaks MDB command can be 
used to identify various types of mem-
ory leaks very quickly without having 
added any explicit support for this in 
the application itself. The ::findleaks 
command literally prints out a list of 
leaked objects and the stack trace from 
which each one was allocated—point-
ing directly to the location of each leak. 
Libumem is based on the kernel memo-
ry allocator, which provides many of the 
same facilities for the kernel.2

Postmortem Debugging  
in Dynamic Environments
While operating-system and native 
environments have highly developed 
facilities for handling crashes, saving 
dumps, and analyzing them postmor-
tem, the problem of postmortem analy-
sis (and software observability more 
generally) is far from solved in the realm 
of dynamic environments such as Java, 
Python, and JavaScript. In the past post-
mortem analysis was arguably less criti-
cal for these languages because crashes 
in these environments are less signifi-
cant: most end-user applications save 
work frequently anyway, and the operat-
ing system or browser will often restart 
the application after a crash. These 
crashes still represent disruptions to 
the user experience, however, and post-
mortem debugging is the only hope of 
understanding such failures. 

More importantly, dynamic lan-
guages such as Node.js are exploding in 
popularity as building blocks for larger 
distributed systems, where what might 
seem like a minor crash can cause cas-
cading failures up the stack. As a result, 
just as with operating systems and core 
services, fully understanding each fail-
ure is essential to achieving the levels 

while trying to clear each item in the 
ptrs array at lines 14–15, it clears an 
extra element before the array (where 
ii = -1). When running this program, 
you see: 

$ gcc -o example1 example1.c 
$ ./example1 
Segmentation Fault (core dumped)

and the system generates a file called 
core. The Illumos modular debugger 
(MDB) shown in Figure 1 can help in 
examining this file.

MDB’s syntax may seem arcane to 
new users, but this example is rather 
basic. First the ::status command 
produces a summary of what hap-
pened: the process was terminated as a 
result of a segmentation fault attempt-
ing to access memory address 0x10. 
Next the ::walk thread | ::find-
stack -v command is used to exam-
ine thread stacks (in this case, just 
one), and it shows that the program 
died in function func at offset 0x20 in 
the program text. Then the file dumps 
out this instruction to see that the pro-
cess died on the store of 0 into the ad-
dress contained in register %eax.

While this example is admitted-
ly contrived, it illustrates the basic 
method of postmortem debugging. 
Note that unlike in situ debugging, this 
method scales well with the complex-
ity of the program being debugged. If 
instead of one thread in one process 
there were thousands of threads across 
dozens of components (as in the case 
of an operating system), a comprehen-
sive dump would include information 
about all of them. The next challenge 
would be making sense of so much in-
formation, but root-causing the bug is 
at least tractable because all the infor-
mation is available.

In such situations, the next step is 
to build custom tools for extracting, 
analyzing, and summarizing specific 
component state. A comprehensive 
postmortem facility enables engineers 
to build such tools. For example, gdb 
supports user-defined macros. These 
macros can be distributed with the 
source code so that all developers can 
use them both in situ (by attaching gdb 
to a running process) and postmortem 
(by opening a core file with gdb). The 
Python interpreter, for example, pro-
vides such macros, allowing both inter-

preter and native module developers 
to pick apart the C representations of 
Python-level objects.

MDB takes this idea to the next lev-
el: it was designed specifically around 
building custom tools for understand-
ing specific components of the system 
both in situ and postmortem. On Il-
lumos systems, the kernel ships with 
MDB modules that provide more than 
1,000 commands to iterate and inspect 
various components of the kernel. 
Among the most frequently used is the 
::stacks command, which iterates 
all kernel threads, optionally filters 
them based on the presence of a par-
ticular kernel module or function in 
the stack trace, and then dumps out a 
list of unique thread stacks sorted by 
frequency. Figure 2 offers an example 
from a system doing some light I/O.

This invocation collapsed the com-
plexity of more than 600 threads on 
this system to only about seven unique 
thread stacks that are related to the 
ZFS file system. You can quickly see 
the state of the threads in each group 
(e.g., sleeping on a condition variable) 
and examine a representative thread 
for more information. Dozens of other 
operating-system components deliver 
their own MDB commands for inspect-
ing specific component state, includ-
ing the networking stack, the NFS serv-
er, DTrace, and ZFS.

Some of these higher-level analysis 
tools are quite sophisticated. For exam-
ple, the ::typegraph command3 ana-
lyzes an entire production crash dump 
(without debug data) and constructs 
a graph of object references and their 
types. With this graph, users can query 
the type of an arbitrary memory object. 
This is useful for understanding mem-
ory corruption issues, where the main 
problem is identifying which compo-
nent overwrote a particular block of 
memory. Knowing the type of the cor-
rupting object narrows the investiga-
tion from the entire kernel to the com-
ponent responsible for that type.

Such tools are by no means limited 
to production environments. On most 
systems, it is possible to generate a 
core dump from running processes 
too, which make core-dump analy-
sis attractive during development as 
well. When testers or other engineers 
file bugs on application crashes, it is 
often easier to have them include a 
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The most crippling 
problem with  
in situ debugging 
is it can only be 
used to understand 
reproducible 
problems.

of reliability expected of such founda-
tional software.

Providing a postmortem facility for 
dynamic environments, however, is 
not easy. While native programs can 
leverage operating-system support for 
core dumps, dynamic languages must 
present postmortem state using the 
same higher-level abstractions with 
which their developers are familiar. A 
postmortem environment for C pro-
grams can simply present a list of glob-
al symbols, pointers to thread stacks, 
and all of a process’s virtual memory 
(all of which the operating system has 
to maintain anyway), but a similar facil-
ity for Java must augment (or replace) 
these with analogous Java abstrac-
tions. When Java programs crash, Java 
developers want to look at Java thread 
stacks, local variables, and objects, not 
(necessarily) the threads, variables, 
and raw memory used by the Java vir-
tual machine (JVM) implementation. 
Also, because programs in dynamic 
languages run inside an interpreter or 
VM, when the user program “crashes,” 
the interpreter or VM itself does not 
crash. For example, when a Python pro-
gram uses an undefined variable (the 
C equivalent of a NULL pointer), the 
interpreter detects this condition and 
gracefully exits. Therefore, to support 
postmortem debugging, the interpret-
er would need to trigger the core-dump 
facility explicitly, not rely on the oper-
ating system to detect the crash.

In some cases, presenting useful 
postmortem state requires formal-
izing abstractions that do not exist 
explicitly in the language at all. JavaS-
cript presents a particularly interesting 
challenge in this regard. In addition 
to the usual global state and stack de-
tails, JavaScript maintains a pending 
event queue, as well as a collection of 
events that may happen later—both of 
which exist only as functions with as-
sociated context that will be invoked 
at some later time by the runtime. 
For example, a Web browser might 
have many outstanding asynchronous 
HTTP requests. For each one, there is 
a function with associated context that 
may not be reachable from the global 
scope, and so would not be included 
in a simple dump of all global state 
and thread state. Nevertheless, under-
standing which of these requests are 
outstanding and what state is associ-

ated with them may very well be critical 
to understanding a fatal failure.

This problem is even more acute 
with Node.js on the server, which is 
frequently used to manage thousands 
of concurrent connections to many dif-
ferent types of components. A single 
Node program might have hundreds of 
outstanding HTTP requests, each one 
waiting on a database query to com-
plete. The program may crash while 
processing one of the database query 
results because it encountered an in-
valid database state resulting from one 
of the other outstanding queries. Such 
problems beg for postmortem debug-
ging because each instance is seen rela-
tively rarely; they are essentially impos-
sible to understand from just a stack 
trace, but they can often be identified 
from the first occurrence, given enough 
information from the time of the crash. 
The challenge is presenting informa-
tion about outstanding asynchronous 
events (that is, callbacks that will be 
invoked at some future time) in a mean-
ingful way to JavaScript developers, 
who generally do not have direct access 
to the event queue or the collection of 
outstanding events; these abstractions 
are implicit in the underlying APIs, so 
exposing this requires first figuring out 
how to express these abstractions.

Finally, user-facing applications have 
the additional problem of transferring 
postmortem state from the user’s com-
puter to developers who can root-cause 
the bug (while preserving user privacy). 
As Eric Schrock11 details, this problem 
remains largely unsolved for one of the 
most significant dynamic environments 
today: the JavaScript Web application. 
There is no browser-based facility for 
automatically uploading postmortem 
program state back to the server.

Despite these difficulties, some 
dynamic environments do provide 
postmortem facilities. For example, 
the Oracle Java HotSpot VM supports 
extracting Java-level state from JVM 
native core dumps.  When the JVM 
crashes, or when a core file is manually 
created using operating system tools 
such as gcore(1), you can use the jdb(1) 
tool to examine the state of the Java 
program (rather than the JVM itself) 
when the core file was generated. The 
core file can also be processed by a 
tool called jmap(1) to create a Java heap 
dump that can in turn be analyzed us-
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ing several different programs. 
Such facilities are only a start, how-

ever: setting up an application to trigger 
a core dump on crash in the first place 
is nontrivial. Additionally, these facili-
ties are very specific to the HotSpot VM. 
There’s an active Java Community Spec-
ification proposal for a common API to 
access debugging information, but at 
the time of this writing this project is 
stalled pending clarity about Oracle’s 
commitment to the project.8

While the Java facility has several 
important limitations, many other dy-
namic environments do not appear to 
have postmortem facilities at all—at 
least not any that meet the constraints 
just described.

Python10 and Ruby4 each has a facil-
ity called a postmortem debugger, but 
these refer to starting a program under 
a debugger and having the program 
break into an interactive debugger ses-
sion when the program crashes. This is 
not suitable for production for several 
reasons, not least of which is that it is 
not fully automatic. As described earli-
er, it is not tenable to interrupt produc-
tion service while an engineer logs in to 
diagnose a problem interactively.

Erlang5 provides a rich crash-dump 
facility for the Erlang runtime itself. It 
works much like a native crash dump 
in that on failure it saves a comprehen-
sive state dump to a file and then exits, 
allowing the operating system to see 
the program has exited and restart it 
immediately. The crash dump file can 
then be analyzed later.

The bash shell1 is interesting be-
cause its deployment model is so dif-
ferent even from other dynamic envi-
ronments. Bash provides a mechanism 
called xtrace for producing a compre-
hensive trace file describing nearly ev-
ery expression that the shell evaluates 
as part of execution. This is very useful 
for understanding shell script failures 
but can produce a lot of output even for 
simple scripts. The output grows un-
bounded as the program runs, which 
would normally make it untenable for 
production use in servers or applica-
tions, but since most bash scripts have 
very finite lifetimes, this mechanism 
is an effective postmortem facility as 
long as the output can be reasonably 
stored and managed (that is, automati-
cally deleted after successful runs).

JavaScript, unlike many of the 

above languages, is widely deployed 
under several completely different 
runtime environments such as Mozil-
la’s SpiderMonkey, Google’s V8 (used 
in both Chrome and Node.js) and the 
WebKit JavaScript engine. Although 
JavaScript in situ debugging facilities 
have improved substantially in recent 
years in the form of improved browser 
support for runtime program inspec-
tion, there remains no widely used 
postmortem facility for JavaScript.

A Primitive Postmortem 
Facility for Node.js
Despite the lack of JavaScript language 
support, we have developed a crude 
but effective postmortem debugging 
facility for use in Joyent’s Node.js pro-
duction deployments. Recall that Node 
typically runs on a server rather than a 
Web browser and is commonly used to 
implement services that scale to hun-
dreds or thousands of network connec-
tions. We use the following primitives 
provided by Node and the underlying 
V8 virtual machine to construct a sim-
ple implementation:

˲˲ An uncaughtException event, 
which allows a program to register a 
function to be invoked when the pro-
gram throws an exception that bubbles 
all the way to the top level (that would 
normally cause the program to crash).

˲˲ Built-in mechanisms for serial-
izing/deserializing simple JavaScript 
objects as a text string (JSON.strin-
gify() and JSON.parse()).

˲˲ Synchronous functions for writing 
to files.

The first challenge is actually iden-
tifying which state to dump. JavaScript 
provides a way to introspect global 
state, but Node.js programs that declare 
variables do not use global state per se. 
What looks like the top-level scope is 
actually contained inside a function 
scope, and function scopes cannot be 
introspected. To work around this, pro-
grams using our postmortem facility 
must explicitly register debugging state 
ahead of time. While this solution is 
deeply unsatisfying because it is always 
difficult to know ahead of time what in-
formation would be useful to have when 
debugging, it has proved effective in 
practice because each of our programs 
essentially just instantiates a singleton 
object representing the program itself 
and then registers that with the post-

There is no 
browser-based 
facility for 
automatically 
uploading 
postmortem 
program state  
back to the server.
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mortem facility. Most relevant program 
state is referenced by this pseudo-global 
object in one way or another.

The next challenge is serializing cir-
cular objects. JSON.stringify() does 
not support this for obvious reasons, 
so our implementation avoids this is-
sue by pruning all circular references 
before serializing the debug object. 
While this makes it harder to find in-
formation in the dump, we know that 
at least one copy of every object will be 
present somewhere in the dump.

Given all this, the implementation 
is straightforward: on the uncaughtEx-
ception event, we prune circular refer-
ences from the debug state, serialize it 
using the built-in JSON.stringify() 
routine, and save the result to disk in 
a file called core. To analyze the core 
file, we use a tool that reads core using 
JSON.parse() and presents the seri-
alized state for engineers to examine. 
The implementation is open source 
and available on GitHub.7

In addition to the implementation 
challenges just described, this ap-
proach has several significant limita-
tions. First, it can save only state that 
programmers can register ahead of 
time, but as already discussed, there 
is a great deal of other important state 
inside a JavaScript program such as 
function arguments in the call stack 
and the contexts associated with pend-
ing and future events, none of which is 
reachable from the global scope.  

Second, since the entire point of 
this system is to capture program 
state in the event of a crash, it must be 
highly reliable. This implementation is 
robust to most runtime failures, but it 
still requires additional memory first 
to execute the dump code and to seri-
alize the program state. The additional 
memory could easily be as large as the 
whole heap, which makes it untenable 
for failures resulting from memory 
pressure—a common cause of failures 
in dynamic environments.  

Third, because the implementation 
removes circular references before se-
rializing the program data, the result-
ing dump is more difficult to browse, 
and the facility cannot support dumps 
that are not intended for postmortem 
analysis (such as live dumps).

Despite these deficiencies, this 
implementation has proved quite ef-
fective because it meets the require-

popularity for building critical software 
components, this gap is becoming in-
creasingly important. Languages that 
ignore the problems associated with 
debugging production systems will in-
creasingly be relegated to solving sim-
pler, well-confined, well-understood 
problems, while those that provide rich 
tools for understanding failure post-
mortem will form the basis of the next 
generation of software bedrock.
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ments set forth earlier: it is always-on 
in production, fully automatic, the 
result is transferable to other systems 
for analysis, and it is comprehensive 
enough to solve complex problems. To 
address many of the scope, robustness, 
and richness problems described here, 
however, and to provide such a facility 
for all users of a language, the postmor-
tem facility must be incorporated into 
the VM itself. Such an implementation 
would work similarly in principle, but 
it could include absolutely all program 
state, be made to work reliably in the 
face of failure of the program itself, 
stream the output to avoid using much 
additional memory, and use a format 
that preserves the underlying memory 
structures to ease understanding of 
the dump. Most importantly, including 
tools for postmortem analysis out of 
the box would go a long way toward the 
adoption of postmortem techniques in 
these environments.

Conclusion
Postmortem debugging facilities have 
long enabled operating-system engi-
neers and native-application develop-
ers to understand complex software 
failures from the first occurrence in 
deployed systems. Such facilities form 
the backbone of the support process 
for enterprise systems and are essential 
for software components at the core of 
a complex software environment. Even 
simple platforms for recording post-
mortem state enable engineers to de-
velop sophisticated analysis tools that 
help them to quickly root-cause many 
types of problems.

Meanwhile, modern dynamic lan-
guages are growing in popularity be-
cause they so effectively facilitate rapid 
development. Environments such as 
Node.js also promote programming 
models that scale well, particularly in 
the face of latency bubbles. This is be-
coming increasingly important in to-
day’s real-time systems. 

Postmortem debugging for dynamic 
environments is still in its infancy. Most 
such environments, even those consid-
ered mature, do not provide any facil-
ity for recording postmortem state, let 
alone tools for higher-level analysis of 
such failures. Those tools that do exist 
are not first-class tools in their respec-
tive environments and so are not widely 
used. As dynamic languages grow in 




