
44 communications of the acm | december 2011 | vol. 54 | no. 12

practice
doi:10.1145/2043174.2043189

 Article development led by
 queue.acm.org

Many modern dynamic languages lack tools
for understanding complex failures.

By David Pacheco

Postmortem
Debugging
in Dynamic
Environments

Since then, postmortem debugging
technology has been developed and
used in many different systems, includ-
ing all major consumer and enterprise
operating systems, as well as the na-
tive execution environments on those
systems. These environments make
up much of today’s core infrastructure,
from the operating systems that under-
lie every application to core services
such as Domain Name System (DNS),
and thus form the building blocks of
nearly all larger systems. To achieve the
high levels of reliability expected from
such software, these systems are de-
signed to restore service quickly after
each failure while preserving enough
information that the failure itself can
later be completely understood.

While such software was histori-
cally written in C and other native
environments, core infrastructure is
increasingly being developed in dy-
namic languages, from Java over the
past two decades to server-side JavaS-
cript over the past 18 months. Dynam-
ic languages are attractive for many
reasons, not least of which is that they
often accelerate the development of
complex software.

Conspicuously absent from many of
these environments, however, are fa-
cilities for even basic postmortem de-
bugging, which makes understanding
production failures extremely difficult.
Dynamic languages must bridge this
gap and provide rich tools for under-
standing failures in deployed systems
in order to match the reliability de-
manded from their growing role in the
bedrock of software systems.

To understand the real potential
for sophisticated postmortem analysis
tools, we first review the state of debug-
ging today and the role of postmortem
analysis tools in other environments.
We then examine the unique chal-
lenges around building such tools for
dynamic environments and the state
of such tools today.

Debugging in the Large
To understand the unique value of
postmortem debugging, it is worth

Des pite the best efforts of software engineers to
produce high-quality software, inevitably some bugs
escape even the most rigorous testing process and
are first encountered by end users. When this
happens, such failures must be understood quickly,
the underlying bugs fixed, and deployments patched
to avoid another user (or the same one) running
into the same problem again. As far back as 1951,
the dawn of modern computing, Stanley Gill6 wrote
that “some attention has, therefore, been given to
the problem of dealing with mistakes after the
program has been tried and found to fail.” Gill went
on to describe the first use of “the post-mortem
technique” in software, whereby the running program
was modified to record important system state as it
ran so that the programmer could later understand
what happened and why the software failed.

december 2011 | vol. 54 | no. 12 | communications of the acm 45

I
ll

u

s
t

r
a

t
i

o
n

 b
y

 G
a

r
y

 N
e

ill

examining the alternative. Both na-
tive and dynamic environments today
provide facilities for in situ debugging,
or debugging faulty programs while
they’re still running. This typically in-
volves attaching a separate debugger
program to the faulty program and
then directing execution of the faulty
program interactively, instruction by
instruction or using breakpoints. The
user thus stops the program at various
points to inspect program state in or-

der to figure out where it goes wrong.
Often this process is repeated to test
successive theories about the problem.

This technique can be very effective
for bugs that are readily reproducible,
but it has several drawbacks. First, the
act of stopping a program often chang-
es its behavior. Bugs resulting from
unexpected interactions between par-
allel operations (such as race condi-
tions) can be especially challenging to
analyze this way because the timing of

various events is significantly affected
by the debugger itself. More impor-
tantly, in situ debugging is often un-
tenable on production systems: many
debuggers rely on an unoptimized
debug build that’s too slow to run in
production; engineers often do not
have access to the systems where the
program is running (as in the case of
most mobile and desktop applications
and many enterprise systems); and the
requisite debugging tools are often not

46 communications of the acm | december 2011 | vol. 54 | no. 12

practice

available on those systems anyway.
Even for cases where engineers can

access the buggy software with the
tools they need, pausing the program
in the debugger usually represents an
unacceptable disruption of produc-
tion service and an unacceptable risk
that a fat-fingered debugger command
might cause the program to crash. Ad-
ministrators often cannot take the risk
of downtime in order to understand a
failure that caused a previous outage.
More importantly, they should not have
to. Even in 1951 Gill cited the “extrava-
gant waste of machine time involved”
in concluding that “single-[step] op-
eration is a useful facility for the main-
tenance engineer, but the programmer
can only regard it as a last resort.”

The most crippling problem with
in situ debugging is it can only be used
to understand reproducible problems.
Many production issues are either very
rare or involve complex interactions
of many systems, which are often very
difficult to replicate in a development
environment. The rarity of such is-
sues does not make them unimport-
ant: quite the contrary, an operating
system crash that happens only once a
week can be extremely costly in terms
of downtime, but any bug that can be
made to occur only once a week is very
difficult to debug live. Similarly, a fatal
error that occurs once a week in an ap-
plication used by thousands of people
may result in many users hitting the bug
each day, but engineers cannot attach a
debugger on every user’s system.

So-called printf debugging is a

common technique for dealing with
the reproducibility issue. In this ap-
proach, engineers modify the software
to log bits of relevant program state
at key points in the code. This causes
data to be collected without human
intervention so it can be examined
after a problem occurs to understand
what happened. By automating the
data collection, this technique usually
results in significantly less impact to
production service because when the
program crashes, the system can im-
mediately restart it without waiting
for an engineer to log in and debug the
problem interactively.

Extracting enough information
about fatal failures from a log file is
often very difficult, however, and fre-
quently it is necessary to run through
several iterations of inserting addi-
tional logging, deploying the modified
program, and examining the output.
This, too, is untenable for production
systems since ad hoc code changes are
often impractical (in the case of desk-
top and mobile applications) or pro-
hibited by change control policies (and
common sense).

The solution is to build a facility
that captures all program state when
the program crashes. In 1980 Douglas
R. McGregor and Jon R. Malone9 of the
University of Strathclyde in Glasgow
observed that with this approach
“there is virtually no runtime overhead
in either space or speed” and “no ex-
tra trace routines are necessary,” but
the facility “remains effective when a
program has passed into production

use.” Most importantly, after the sys-
tem saves all the program state, it can
restart the program immediately to
restore service quickly. With such sys-
tems in place, even rare bugs can often
be root-caused and fixed based on the
first occurrence, whether in develop-
ment, test, or production. This enables
software vendors to fix bugs before too
many users encounter them.

To summarize, in order to root-
cause failures that occur anywhere
from development to production, a
postmortem debugging facility must
satisfy several constraints:

˲˲ Application software must not
require modifications that cannot be
used in production in order to support
postmortem debugging, such as unop-
timized code or additional debug data
that would significantly impact perfor-
mance (or affect correctness at all).

˲˲ The facility must be always on: It
must not require an administrator to
attach a debugger or otherwise enable
postmortem support before the prob-
lem occurs.

˲˲ The facility must be fully auto-
matic: It should detect the crash, save
program state, and then immediately
allow the system to restart the failed
component to restore service as quick-
ly as possible.

˲˲ The dump (saved state) must be
comprehensive: a stack trace, while
probably the single most valuable
piece of information, very often does
not provide sufficient information to
root-cause a problem from a single oc-
currence. Usually engineers want both
global state and each thread’s state
(including stack trace and each stack
frame’s arguments and variables). Of
course, there’s a wide range of pos-
sible results in this dimension; the
“constraint” (such as it is) is that the
facility must provide enough informa-
tion to be useful for nontrivial prob-
lems. The more information that can
be included in the dump, the more
likely engineers will be able to identify
the root cause based on just one oc-
currence.

˲˲ The dump must be transferable to
other systems for analysis. This allows
engineers to analyze the data using
whatever tools they need in a familiar
environment and obviates the need
for engineers to access production sys-
tems in many cases.

Figure 1. A simple MDB example.

$ mdb core
 Loading modules: [ld.so.1]
 > ::status
 debugging core file of example1 (32-bit) from solaron
 file: /export/home/dap/tmp/example1
 initial argv: ./example1
 threading model: native threads
 status: process terminated by SIGSEGV (Segmentation Fault), addr=10

 > ::walk thread | ::findstack -v
 stack pointer for thread 1: 8047b98
 [08047b98 func+0x20()]
 08047bbc main+0x21(1, 8047bdc, 8047be4)
 08047bd0 _start+0x80(1, 8047cc4, 0, 8047ccf, 8047cdc, 8047ced)

 > func+0x20::dis
 ...
 func+0x20: movl $0x0,(%eax)
 ...

practice

december 2011 | vol. 54 | no. 12 | communications of the acm 47

Postmortem Debugging
in Native Environments
To understand the potential value of
postmortem debugging in dynamic
languages, it is also helpful to exam-
ine those areas where postmortem
analysis techniques are well developed
and widely used. The best examples
are operating systems and their na-
tive execution environments. Histori-
cally this software has comprised core
infrastructure; failures at this level of
the stack are often very costly either be-
cause the systems themselves are nec-
essary for business-critical functions
(as in the case of operating systems on
which business-critical software is run-
ning) or because they are relied upon
by business-critical systems upstack
(as in the case of infrastructure services
such as DNS).

Most modern operating systems can
be configured so that when they crash,
they immediately save a “crash dump”
of all of their state and then reboot.
Likewise, these systems can be config-
ured so that when a user application
crashes, the operating system saves a
“core dump” of all program state to a
file and then restarts the application.
In most cases, these mechanisms al-
low the operating system or user ap-
plication to return to service quickly
while preserving enough information
to root-cause the failure later.

As an example, let’s look at core
dumps under Illumos, an open source
Solaris-based system. Take the follow-
ing broken program:

1 int
2 main(int argc, char *argv[])
3 {
4 func();
5 return (0);
6 }
7
8 int
9 func(void)
10 {
11 int ii;
12 int *ptrs[100];
13
14 �for (ii = -1; ii < 100; ii++)
15 *(ptrs[ii]) = 0;
16
17 return (0);
18 }

This simple program has a fatal flaw:

Figure 2. Analyzing thread stacks.

> ::stacks -m zfs
THREAD STATE SOBJ COUNT
ffffff0007c0fc60 SLEEP CV 2
 swtch+0x147
 cv_wait+0x61
 txg_thread_wait+0x5f
 txg_quiesce_thread+0x94
 thread_start+8

ffffff0007f51c60 FREE <NONE> 1
 cpu_decay+0x2f
 bitset_atomic_del+0x38
 apic_setspl+0x5c
 do_splx+0x50
 disp_lock_exit+0x55
 cv_signal+0x96
 taskq_dispatch+0x351
 zio_taskq_dispatch+0x6b
 zio_interrupt+0x1a
 vdev_disk_io_intr+0x6b
 biodone+0x84
 dadk_iodone+0xe7
 dadk_pktcb+0xc6
 ata_disk_complete+0x119
 ata_hba_complete+0x38
 ghd_doneq_process+0xb3
 0x16
 dispatch_softint+0x3f

ffffff0007b25c60 SLEEP CV 1
 swtch+0x147
 cv_timedwait+0xba
 arc_reclaim_thread+0x17b
 thread_start+8

ffffff0007b2bc60 SLEEP CV 1
 swtch+0x147
 cv_timedwait+0xba
 l2arc_feed_thread+0xa5
 thread_start+8

ffffff0009b95c60 SLEEP CV 1
 swtch+0x147
 cv_timedwait+0xba
 txg_thread_wait+0x7b
 txg_sync_thread+0x114
 thread_start+8

ffffff01e26d08e0 SLEEP CV 1
 swtch+0x147
 cv_wait+0x61
 txg_wait_synced+0x7f
 spa_sync_allpools+0x76
 zfs_sync+0xce
 vfs_sync+0x9c
 syssync+0xb
 sys_syscall32+0x101

ffffff0007c15c60 SLEEP CV 1
 swtch+0x147
 cv_wait+0x61
 zio_wait+0x5d
 dsl_pool_sync+0xe1
 spa_sync+0x32a
 txg_sync_thread+0x265
 thread_start+8

48 communications of the acm | december 2011 | vol. 54 | no. 12

practice

core dump than to try to guess what
steps they took that led to the crash
and then reproduce the problem from
those steps. Examining the core dump
is also the only way to be sure the prob-
lem you found is the same one the bug
reporter encountered.

Higher-level dump analysis tools can
be built explicitly for development as
well. Libumem, a drop-in replacement
for malloc(3c) and friends, provides
(among other features) an MDB mod-
ule for iterating and inspecting objects
related to the allocator. Combined with
an optional feature to record stack
traces for each allocator operation, the
::findleaks MDB command can be
used to identify various types of mem-
ory leaks very quickly without having
added any explicit support for this in
the application itself. The ::findleaks
command literally prints out a list of
leaked objects and the stack trace from
which each one was allocated—point-
ing directly to the location of each leak.
Libumem is based on the kernel memo-
ry allocator, which provides many of the
same facilities for the kernel.2

Postmortem Debugging
in Dynamic Environments
While operating-system and native
environments have highly developed
facilities for handling crashes, saving
dumps, and analyzing them postmor-
tem, the problem of postmortem analy-
sis (and software observability more
generally) is far from solved in the realm
of dynamic environments such as Java,
Python, and JavaScript. In the past post-
mortem analysis was arguably less criti-
cal for these languages because crashes
in these environments are less signifi-
cant: most end-user applications save
work frequently anyway, and the operat-
ing system or browser will often restart
the application after a crash. These
crashes still represent disruptions to
the user experience, however, and post-
mortem debugging is the only hope of
understanding such failures.

More importantly, dynamic lan-
guages such as Node.js are exploding in
popularity as building blocks for larger
distributed systems, where what might
seem like a minor crash can cause cas-
cading failures up the stack. As a result,
just as with operating systems and core
services, fully understanding each fail-
ure is essential to achieving the levels

while trying to clear each item in the
ptrs array at lines 14–15, it clears an
extra element before the array (where
ii = -1). When running this program,
you see:

$ gcc -o example1 example1.c
$./example1
Segmentation Fault (core dumped)

and the system generates a file called
core. The Illumos modular debugger
(MDB) shown in Figure 1 can help in
examining this file.

MDB’s syntax may seem arcane to
new users, but this example is rather
basic. First the ::status command
produces a summary of what hap-
pened: the process was terminated as a
result of a segmentation fault attempt-
ing to access memory address 0x10.
Next the ::walk thread | ::find-
stack -v command is used to exam-
ine thread stacks (in this case, just
one), and it shows that the program
died in function func at offset 0x20 in
the program text. Then the file dumps
out this instruction to see that the pro-
cess died on the store of 0 into the ad-
dress contained in register %eax.

While this example is admitted-
ly contrived, it illustrates the basic
method of postmortem debugging.
Note that unlike in situ debugging, this
method scales well with the complex-
ity of the program being debugged. If
instead of one thread in one process
there were thousands of threads across
dozens of components (as in the case
of an operating system), a comprehen-
sive dump would include information
about all of them. The next challenge
would be making sense of so much in-
formation, but root-causing the bug is
at least tractable because all the infor-
mation is available.

In such situations, the next step is
to build custom tools for extracting,
analyzing, and summarizing specific
component state. A comprehensive
postmortem facility enables engineers
to build such tools. For example, gdb
supports user-defined macros. These
macros can be distributed with the
source code so that all developers can
use them both in situ (by attaching gdb
to a running process) and postmortem
(by opening a core file with gdb). The
Python interpreter, for example, pro-
vides such macros, allowing both inter-

preter and native module developers
to pick apart the C representations of
Python-level objects.

MDB takes this idea to the next lev-
el: it was designed specifically around
building custom tools for understand-
ing specific components of the system
both in situ and postmortem. On Il-
lumos systems, the kernel ships with
MDB modules that provide more than
1,000 commands to iterate and inspect
various components of the kernel.
Among the most frequently used is the
::stacks command, which iterates
all kernel threads, optionally filters
them based on the presence of a par-
ticular kernel module or function in
the stack trace, and then dumps out a
list of unique thread stacks sorted by
frequency. Figure 2 offers an example
from a system doing some light I/O.

This invocation collapsed the com-
plexity of more than 600 threads on
this system to only about seven unique
thread stacks that are related to the
ZFS file system. You can quickly see
the state of the threads in each group
(e.g., sleeping on a condition variable)
and examine a representative thread
for more information. Dozens of other
operating-system components deliver
their own MDB commands for inspect-
ing specific component state, includ-
ing the networking stack, the NFS serv-
er, DTrace, and ZFS.

Some of these higher-level analysis
tools are quite sophisticated. For exam-
ple, the ::typegraph command3 ana-
lyzes an entire production crash dump
(without debug data) and constructs
a graph of object references and their
types. With this graph, users can query
the type of an arbitrary memory object.
This is useful for understanding mem-
ory corruption issues, where the main
problem is identifying which compo-
nent overwrote a particular block of
memory. Knowing the type of the cor-
rupting object narrows the investiga-
tion from the entire kernel to the com-
ponent responsible for that type.

Such tools are by no means limited
to production environments. On most
systems, it is possible to generate a
core dump from running processes
too, which make core-dump analy-
sis attractive during development as
well. When testers or other engineers
file bugs on application crashes, it is
often easier to have them include a

practice

december 2011 | vol. 54 | no. 12 | communications of the acm 49

The most crippling
problem with
in situ debugging
is it can only be
used to understand
reproducible
problems.

of reliability expected of such founda-
tional software.

Providing a postmortem facility for
dynamic environments, however, is
not easy. While native programs can
leverage operating-system support for
core dumps, dynamic languages must
present postmortem state using the
same higher-level abstractions with
which their developers are familiar. A
postmortem environment for C pro-
grams can simply present a list of glob-
al symbols, pointers to thread stacks,
and all of a process’s virtual memory
(all of which the operating system has
to maintain anyway), but a similar facil-
ity for Java must augment (or replace)
these with analogous Java abstrac-
tions. When Java programs crash, Java
developers want to look at Java thread
stacks, local variables, and objects, not
(necessarily) the threads, variables,
and raw memory used by the Java vir-
tual machine (JVM) implementation.
Also, because programs in dynamic
languages run inside an interpreter or
VM, when the user program “crashes,”
the interpreter or VM itself does not
crash. For example, when a Python pro-
gram uses an undefined variable (the
C equivalent of a NULL pointer), the
interpreter detects this condition and
gracefully exits. Therefore, to support
postmortem debugging, the interpret-
er would need to trigger the core-dump
facility explicitly, not rely on the oper-
ating system to detect the crash.

In some cases, presenting useful
postmortem state requires formal-
izing abstractions that do not exist
explicitly in the language at all. JavaS-
cript presents a particularly interesting
challenge in this regard. In addition
to the usual global state and stack de-
tails, JavaScript maintains a pending
event queue, as well as a collection of
events that may happen later—both of
which exist only as functions with as-
sociated context that will be invoked
at some later time by the runtime.
For example, a Web browser might
have many outstanding asynchronous
HTTP requests. For each one, there is
a function with associated context that
may not be reachable from the global
scope, and so would not be included
in a simple dump of all global state
and thread state. Nevertheless, under-
standing which of these requests are
outstanding and what state is associ-

ated with them may very well be critical
to understanding a fatal failure.

This problem is even more acute
with Node.js on the server, which is
frequently used to manage thousands
of concurrent connections to many dif-
ferent types of components. A single
Node program might have hundreds of
outstanding HTTP requests, each one
waiting on a database query to com-
plete. The program may crash while
processing one of the database query
results because it encountered an in-
valid database state resulting from one
of the other outstanding queries. Such
problems beg for postmortem debug-
ging because each instance is seen rela-
tively rarely; they are essentially impos-
sible to understand from just a stack
trace, but they can often be identified
from the first occurrence, given enough
information from the time of the crash.
The challenge is presenting informa-
tion about outstanding asynchronous
events (that is, callbacks that will be
invoked at some future time) in a mean-
ingful way to JavaScript developers,
who generally do not have direct access
to the event queue or the collection of
outstanding events; these abstractions
are implicit in the underlying APIs, so
exposing this requires first figuring out
how to express these abstractions.

Finally, user-facing applications have
the additional problem of transferring
postmortem state from the user’s com-
puter to developers who can root-cause
the bug (while preserving user privacy).
As Eric Schrock11 details, this problem
remains largely unsolved for one of the
most significant dynamic environments
today: the JavaScript Web application.
There is no browser-based facility for
automatically uploading postmortem
program state back to the server.

Despite these difficulties, some
dynamic environments do provide
postmortem facilities. For example,
the Oracle Java HotSpot VM supports
extracting Java-level state from JVM
native core dumps. When the JVM
crashes, or when a core file is manually
created using operating system tools
such as gcore(1), you can use the jdb(1)
tool to examine the state of the Java
program (rather than the JVM itself)
when the core file was generated. The
core file can also be processed by a
tool called jmap(1) to create a Java heap
dump that can in turn be analyzed us-

50 communications of the acm | december 2011 | vol. 54 | no. 12

practice

ing several different programs.
Such facilities are only a start, how-

ever: setting up an application to trigger
a core dump on crash in the first place
is nontrivial. Additionally, these facili-
ties are very specific to the HotSpot VM.
There’s an active Java Community Spec-
ification proposal for a common API to
access debugging information, but at
the time of this writing this project is
stalled pending clarity about Oracle’s
commitment to the project.8

While the Java facility has several
important limitations, many other dy-
namic environments do not appear to
have postmortem facilities at all—at
least not any that meet the constraints
just described.

Python10 and Ruby4 each has a facil-
ity called a postmortem debugger, but
these refer to starting a program under
a debugger and having the program
break into an interactive debugger ses-
sion when the program crashes. This is
not suitable for production for several
reasons, not least of which is that it is
not fully automatic. As described earli-
er, it is not tenable to interrupt produc-
tion service while an engineer logs in to
diagnose a problem interactively.

Erlang5 provides a rich crash-dump
facility for the Erlang runtime itself. It
works much like a native crash dump
in that on failure it saves a comprehen-
sive state dump to a file and then exits,
allowing the operating system to see
the program has exited and restart it
immediately. The crash dump file can
then be analyzed later.

The bash shell1 is interesting be-
cause its deployment model is so dif-
ferent even from other dynamic envi-
ronments. Bash provides a mechanism
called xtrace for producing a compre-
hensive trace file describing nearly ev-
ery expression that the shell evaluates
as part of execution. This is very useful
for understanding shell script failures
but can produce a lot of output even for
simple scripts. The output grows un-
bounded as the program runs, which
would normally make it untenable for
production use in servers or applica-
tions, but since most bash scripts have
very finite lifetimes, this mechanism
is an effective postmortem facility as
long as the output can be reasonably
stored and managed (that is, automati-
cally deleted after successful runs).

JavaScript, unlike many of the

above languages, is widely deployed
under several completely different
runtime environments such as Mozil-
la’s SpiderMonkey, Google’s V8 (used
in both Chrome and Node.js) and the
WebKit JavaScript engine. Although
JavaScript in situ debugging facilities
have improved substantially in recent
years in the form of improved browser
support for runtime program inspec-
tion, there remains no widely used
postmortem facility for JavaScript.

A Primitive Postmortem
Facility for Node.js
Despite the lack of JavaScript language
support, we have developed a crude
but effective postmortem debugging
facility for use in Joyent’s Node.js pro-
duction deployments. Recall that Node
typically runs on a server rather than a
Web browser and is commonly used to
implement services that scale to hun-
dreds or thousands of network connec-
tions. We use the following primitives
provided by Node and the underlying
V8 virtual machine to construct a sim-
ple implementation:

˲˲ An uncaughtException event,
which allows a program to register a
function to be invoked when the pro-
gram throws an exception that bubbles
all the way to the top level (that would
normally cause the program to crash).

˲˲ Built-in mechanisms for serial-
izing/deserializing simple JavaScript
objects as a text string (JSON.strin-
gify() and JSON.parse()).

˲˲ Synchronous functions for writing
to files.

The first challenge is actually iden-
tifying which state to dump. JavaScript
provides a way to introspect global
state, but Node.js programs that declare
variables do not use global state per se.
What looks like the top-level scope is
actually contained inside a function
scope, and function scopes cannot be
introspected. To work around this, pro-
grams using our postmortem facility
must explicitly register debugging state
ahead of time. While this solution is
deeply unsatisfying because it is always
difficult to know ahead of time what in-
formation would be useful to have when
debugging, it has proved effective in
practice because each of our programs
essentially just instantiates a singleton
object representing the program itself
and then registers that with the post-

There is no
browser-based
facility for
automatically
uploading
postmortem
program state
back to the server.

practice

december 2011 | vol. 54 | no. 12 | communications of the acm 51

mortem facility. Most relevant program
state is referenced by this pseudo-global
object in one way or another.

The next challenge is serializing cir-
cular objects. JSON.stringify() does
not support this for obvious reasons,
so our implementation avoids this is-
sue by pruning all circular references
before serializing the debug object.
While this makes it harder to find in-
formation in the dump, we know that
at least one copy of every object will be
present somewhere in the dump.

Given all this, the implementation
is straightforward: on the uncaughtEx-
ception event, we prune circular refer-
ences from the debug state, serialize it
using the built-in JSON.stringify()
routine, and save the result to disk in
a file called core. To analyze the core
file, we use a tool that reads core using
JSON.parse() and presents the seri-
alized state for engineers to examine.
The implementation is open source
and available on GitHub.7

In addition to the implementation
challenges just described, this ap-
proach has several significant limita-
tions. First, it can save only state that
programmers can register ahead of
time, but as already discussed, there
is a great deal of other important state
inside a JavaScript program such as
function arguments in the call stack
and the contexts associated with pend-
ing and future events, none of which is
reachable from the global scope.

Second, since the entire point of
this system is to capture program
state in the event of a crash, it must be
highly reliable. This implementation is
robust to most runtime failures, but it
still requires additional memory first
to execute the dump code and to seri-
alize the program state. The additional
memory could easily be as large as the
whole heap, which makes it untenable
for failures resulting from memory
pressure—a common cause of failures
in dynamic environments.

Third, because the implementation
removes circular references before se-
rializing the program data, the result-
ing dump is more difficult to browse,
and the facility cannot support dumps
that are not intended for postmortem
analysis (such as live dumps).

Despite these deficiencies, this
implementation has proved quite ef-
fective because it meets the require-

popularity for building critical software
components, this gap is becoming in-
creasingly important. Languages that
ignore the problems associated with
debugging production systems will in-
creasingly be relegated to solving sim-
pler, well-confined, well-understood
problems, while those that provide rich
tools for understanding failure post-
mortem will form the basis of the next
generation of software bedrock.

Acknowledgments
Many thanks to Bryan Cantrill, Peter
Memishian, and Theo Schlossnagle
for reviewing earlier drafts of this ar-
ticle and to Adam Cath, Ryan Dahl,
Robert Mustacchi, and many others
for helpful discussions on this topic.	

 Related articles
 on queue.acm.org

Erlang for Concurrent Programming
Jim Larson
http://queue.acm.org/detail.cfm?id=1454463

Orchestrating an Automated Test Lab
Michael Donat
http://queue.acm.org/detail.cfm?id=1046946

Scripting Web Services Prototypes
Christopher Vincent
http://queue.acm.org/detail.cfm?id=640158

References
1.	B ash Reference Manual (2009); https://www.gnu.

org/s/bash/manual/bash.html.
2.	B onwick, J. The slab allocator: An object-caching

kernel memory allocator. Usenix Summer 1994
Technical Conference.

3.	 Cantrill, B.M. Postmortem object type identification.
In Proceedings of the 5th International Workshop on
Automated and Algorithmic Debugging. (2003)

4.	 Debugging with ruby-debug. 2011; http://bashdb.
sourceforge.net/ruby-debug.html#Post_002dMortem-
Debugging.

5.	E rlang Runtime System Application User’s Guide,
version 5.8.4. 2011. How to interpret the Erlang crash
dumps; http://www.erlang.org/doc/apps/erts/crash_
dump.html.

6.	G ill, S. The diagnosis of mistakes in programmes on
the EDSAC. In Proceedings of the Royal Society A 206
(1951), 538–554.

7.	G itHub Project. 2011; https://github.com/joyent/node-
panic

8.	 Incubator Wiki. March 2011 Board reports. Kato
Project; http://wiki.apache.org/incubator/March2011.

9.	M cGregor, D.R., Malone, J.R. Stabdump—A dump
interpreter program to assist debugging. Software
Practice and Experience 10, 4 (1980), 329–332.

10.	P ython Standard Library. Python v2.7.2 documentation
pdb—the Python debugger; 2011; http://docs.python.
org/library/pdb.html.

11.	S chrock, E. Debugging AJAX in production. ACM
Queue 7, 1 (2009); http://queue.acm.org/detail.
cfm?id=1515745.

David Pacheco is an engineer at Joyent where he leads
the design and implementation of Cloud Analytics, a real-
time Node.js/DTrace-based system for visualizing server
and application performance in the cloud. Previously a
member of the Sun Microsystems Fishworks team, he
worked on several features of the Sun Storage 7000
appliances.

© 2011 ACM 0001-0782/11/12 $10.00

ments set forth earlier: it is always-on
in production, fully automatic, the
result is transferable to other systems
for analysis, and it is comprehensive
enough to solve complex problems. To
address many of the scope, robustness,
and richness problems described here,
however, and to provide such a facility
for all users of a language, the postmor-
tem facility must be incorporated into
the VM itself. Such an implementation
would work similarly in principle, but
it could include absolutely all program
state, be made to work reliably in the
face of failure of the program itself,
stream the output to avoid using much
additional memory, and use a format
that preserves the underlying memory
structures to ease understanding of
the dump. Most importantly, including
tools for postmortem analysis out of
the box would go a long way toward the
adoption of postmortem techniques in
these environments.

Conclusion
Postmortem debugging facilities have
long enabled operating-system engi-
neers and native-application develop-
ers to understand complex software
failures from the first occurrence in
deployed systems. Such facilities form
the backbone of the support process
for enterprise systems and are essential
for software components at the core of
a complex software environment. Even
simple platforms for recording post-
mortem state enable engineers to de-
velop sophisticated analysis tools that
help them to quickly root-cause many
types of problems.

Meanwhile, modern dynamic lan-
guages are growing in popularity be-
cause they so effectively facilitate rapid
development. Environments such as
Node.js also promote programming
models that scale well, particularly in
the face of latency bubbles. This is be-
coming increasingly important in to-
day’s real-time systems.

Postmortem debugging for dynamic
environments is still in its infancy. Most
such environments, even those consid-
ered mature, do not provide any facil-
ity for recording postmortem state, let
alone tools for higher-level analysis of
such failures. Those tools that do exist
are not first-class tools in their respec-
tive environments and so are not widely
used. As dynamic languages grow in

